时时彩个位必中

 找回密码
 注册
科技论坛 门户 新能源 燃料电池 查看内容

云南时时彩开奖直播:新概念使电池技术颠倒

时时彩个位必中 www.1x9gw.com.cn 2018-4-22 20:35| 发布者: dymodel| 查看: 3178| 评论: 0|原作者: baby

摘要: 使用类似于老式沙漏的被动重力进给装置的液体电池设计的新方法可以提供巨大的优势,由于系统的低成本和其设计和操作的简单性,一个团队 麻省理工学院的研究人员做了新电池的演示版本。 液体电池 - 其中正极和负极都 ...
使用类似于老式沙漏的被动重力进给装置的液体电池设计的新方法可以提供巨大的优势,由于系统的低成本和其设计和操作的简单性,一个团队 麻省理工学院的研究人员做了新电池的演示版本。
液体电池 - 其中正极和负极都是液体形式并由膜分开 - 不是一个新的概念,并且这个研究团队的一些成员在三年前揭示了一个早期的概念。 基本技术可以使用各种化学配方,包括在当今的锂离子电池中发现的相同的化合物。 在这种情况下,关键部件不是在电池寿命期间保持就位的固体板,而是可以在液体浆料中携带的微小颗粒。 增加存储容量只需要更大的罐来容纳浆料。
新概念使电池技术颠倒

新概念使电池技术颠倒

新概念使电池技术颠倒

原文如下:
New Concept Turns Battery Technology Upside-Down
A new approach to the design of a liquid battery, using a passive, gravity-fed arrangement similar to an old-fashioned hourglass, could offer great advantages due to the system’s low cost and the simplicity of its design and operation, says a team of MIT researchers who have made a demonstration version of the new battery.

Liquid flow batteries — in which the positive and negative electrodes are each in liquid form and separated by a membrane — are not a new concept, and some members of this research team unveiled an earlier concept three years ago. The basic technology can use a variety of chemical formulations, including the same chemical compounds found in today’s lithium-ion batteries. In this case, key components are not solid slabs that remain in place for the life of the battery, but rather tiny particles that can be carried along in a liquid slurry. Increasing storage capacity simply requires bigger tanks to hold the slurry.

But all previous versions of liquid batteries have relied on complex systems of tanks, valves, and pumps, adding to the cost and providing multiple opportunities for possible leaks and failures.

The new version, which substitutes a simple gravity feed for the pump system, eliminates that complexity. The rate of energy production can be adjusted simply by changing the angle of the device, thus speeding up or slowing down the rate of flow. The concept is described in a paper in the journal Energy and Environmental Science, co-authored by Kyocera Professor of Ceramics Yet-Ming Chiang, Pappalardo Professor of Mechanical Engineering Alexander Slocum, School of Engineering Professor of Teaching Innovation Gareth McKinley, and POSCO Professor of Materials Science and Engineering W. Craig Carter, as well as postdoc Xinwei Chen, graduate student Brandon Hopkins, and four others.

Chiang describes the new approach as something like a “concept car” — a design that is not expected to go into production as it is but that demonstrates some new ideas that can ultimately lead to a real product.

The original concept for flow batteries dates back to the 1970s, but the early versions used materials that had very low energy-density — that is, they had a low capacity for storing energy in proportion to their weight. A major new step in the development of flow batteries came with the introduction of high-energy-density versions a few years ago, including one developed by members of this MIT team, that used the same chemical compounds as conventional lithium-ion batteries. That version had many advantages but shared with other flow batteries the disadvantage of complexity in its plumbing systems.

The new version replaces all that plumbing with a simple, gravity-fed system. In principle, it functions like an old hourglass or egg timer, with particles flowing through a narrow opening from one tank to another. The flow can then be reversed by turning the device over. In this case, the overall shape looks more like a rectangular window frame, with a narrow slot at the place where two sashes would meet in the middle.



In the proof-of-concept version the team built, only one of the two sides of the battery is composed of flowing liquid, while the other side — a sheet of lithium — is in solid form. The team decided to try out the concept in a simpler form before making their ultimate goal, a version where both sides (the positive and negative electrodes) are liquid and flow side by side through an opening while separated by a membrane.

Solid batteries and liquid batteries each have advantages, depending on their specific applications, Chiang says, but “the concept here shows that you don’t need to be confined by these two extremes. This is an example of hybrid devices that fall somewhere in the middle.”

The new design should make possible simpler and more compact battery systems, which could be inexpensive and modular, allowing for gradual expansion of grid-connected storage systems to meet growing demand, Chiang says. Such storage systems will be critical for scaling up the use of intermittent power sources such as wind and solar.

While a conventional, all-solid battery requires electrical connectors for each of the cells that make up a large battery system, in the flow battery only the small region at the center — the “neck” of the hourglass — requires these contacts, greatly simplifying the mechanical assembly of the system, Chiang says. The components are simple enough that they could be made through injection molding or even 3-D printing, he says.

In addition, the basic concept of the flow battery makes it possible to choose independently the two main characteristics of a desired battery system: its power density (how much energy it can deliver at a given moment) and its energy density (how much total energy can be stored in the system). For the new liquid battery, the power density is determined by the size of the “stack,” the contacts where the battery particles flow through, while the energy density is determined by the size of its storage tanks. “In a conventional battery, the power and energy are highly interdependent,” Chiang says.
The trickiest part of the design process, he says, was controlling the characteristics of the liquid slurry to control the flow rates. The thick liquids behave a bit like ketchup in a bottle — it’s hard to get it flowing in the first place, but then once it starts, the flow can be too sudden. Getting the flow just right required a long process of fine-tuning both the liquid mixture and the design of the mechanical structures.

The rate of flow can be controlled by adjusting the angle of the device, Chiang says, and the team found that at a very shallow angle, close to horizontal, “the device would operate most efficiently, at a very steady but low flow rate.” The basic concept should work with many different chemical compositions for the different parts of the battery, he says, but “we chose to demonstrate it with one particular chemistry, one that we understood from previous work. We’re not proposing this particular chemistry as the end game.”

Venkat Viswanathan, an assistant professor of mechanical engineering at Carnegie Mellon University, who was not involved in this work, says: “The authors have been able to build a bridge between the usually disparate fields of fluid mechanics and electrochemistry,” and in so doing developed a promising new approach to battery storage. “Pumping represents a large part of the cost for flow batteries,” he says, “and this new pumpless design could truly inspire a class of passively driven flow batteries.”

The work was supported by the Joint Center for Energy Storage Research, funded by the U.S. Department of Energy. The team also included graduate students Ahmed Helal and Frank Fan, and postdocs Kyle Smith and Zheng Li.

辽公网安备 21100402204006号|时时彩个位必中 ( 辽ICP备07501385号-1   

GMT+8, 2019-3-20 10:58

Powered by 时时彩个位必中 X3.4 Licensed

© 2001-2017 时时彩个位必中

返回顶部
  • 工信部:523家企业纳入电信业务经营不良名单 2019-03-20
  • 凤凰网青岛专栏宫大伟:父亲节《忆父亲》,追忆殷殷父子情 2019-03-19
  • 营运车资质有疑 微信一键可查 2019-03-19
  • 广州中考首用计算机辅助命题 满满的广州元素 2019-03-19
  • 连续不胜!卡帅造恒大最差战绩 他真是球队真命天子? 2019-03-19
  • 2015年全国创新社会治理颁奖典礼 2019-03-18
  • 中国科研团队刷新暗物质探测灵敏度 2019-03-18
  • 市委把全国两会精神原汁原味传达到基层 2019-03-18
  • 北京发展租赁型职工集体宿舍 人均使用面积不得低于4平方米 2019-03-17
  • 【学习时刻】人大教授汪三贵:完成全面脱贫“军令状”离不开“绣花”真功夫 2019-03-17
  • 家装行业猫腻:“低价全包”变身“加价全包” 2019-03-17
  • 三明经贸及友城代表团访问匈牙利 2019-03-17
  • 【理上网来·喜迎十九大】“引进来”与“走出去”水平不断提高:我国吸收外资及对外投资情况“亮点纷呈” 2019-03-16
  • 关于印发《招标采购专业技术人员职业水平评价暂行规定》和《招标师职业水平考试实施办法》的通知 2019-03-16
  • 大视野 看重庆——华龙网 2019-03-15
  • 965| 607| 660| 248| 633| 657| 350| 540| 174| 434|